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The present paper deals with an efficient and accurate limiting strategy for the multi-
dimensional hyperbolic conservation laws on unstructured grids. The multi-dimensional
limiting process (MLP) which has been successfully proposed on structured grids is
extended to unstructured grids. The basic idea of the proposed limiting strategy is to con-
trol the distribution of both cell-centered and cell-vertex physical properties to mimic
multi-dimensional nature of flow physics, which can be formulated to satisfy so called
the MLP condition. The MLP condition can guarantee high-order spatial accuracy and
improved convergence without yielding spurious oscillations. Starting from the MUSCL-
type reconstruction on unstructured grids followed by the efficient implementation of
the MLP condition, MLP slope limiters on unstructured meshes are obtained.

Thanks to its superior limiting strategy and maximum principle satisfying characteris-
tics, the newly developed MLP on unstructured grids is quite effective in controlling
numerical oscillations as well as accurate in capturing multi-dimensional flow features.
Numerous test cases are presented to validate the basic features of the proposed approach.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Recently, dramatic improvement of computing power and numerical method makes it feasible to analyze very large scale
problems including complex flow structure around complete aircraft or rotorcraft [1,2]. As a result, CFD community is more
and more concerned about flow physics around realistic aerodynamic configurations in multiple dimensions. Since manual
production of grid system around multi-dimensional intricate configuration is a highly laboring task, various grid generation
methodologies such as multi-block grids [3] or overset grids [4] have been developed. Difficulties in generating structured
grids for complex geometries have also prompted intensive research and development in unstructured grid methods, which
exhibit quite flexible and robust tessellation capability [5–7].

Aside from automatic and fast grid generation, a robust high-resolution scheme is also essential to solve large scale prob-
lems accurately and efficiently. With a higher-order accurate reconstruction scheme, it is possible to capture complex flow
structures with an adequate number of grid points [8], which is especially conspicuous for flows including vortex-like struc-
ture. At the same time, it entails non-physical oscillations near discontinuities such as shock waves. Spurious oscillations
may lead to wrong solution as well as serious convergence problem. Therefore, a robust and accurate oscillation control
strategy should be incorporated into a higher-order interpolation scheme.
. All rights reserved.
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Many methods to control numerical oscillation have been explored, and several limiting concepts have been proposed.
Most remarkable progresses would be TVD [9,10], TVB [11] and ENO [12]/WENO [13]. As successive studies, MP limiter
[14] and ENO/WENO filters [15,16] have also been developed. Nevertheless, philosophies of most oscillation control methods
are mainly based on one-dimensional convection equation, and it is often insufficient or almost impossible to control oscil-
lations near physical discontinuities in multi-dimensional flow situations. This problem is mainly attributed to the difficulty
of defining monotonicity in multiple dimensions. While the TVD criterion provides the fundamental framework to ensure
monotonicity in one dimension, it does not provide equivalent performance in multiple dimensions [17]. Moreover, defining
the monotonic distribution near saddle point is ambiguous. Thus, an alternative but implementable condition to ensure mul-
ti-dimensional monotonicity is required.

Reconstruction procedure on unstructured grids imposes additional difficulty. Interpolation on unstructured grids is not
readily derived by difference formula due to random indexing, which increases the level of complexity. Following the
MUSCL-type or LED framework, reconstruction methods were mainly focused on the calculation of solution gradient, within
a cell or along an edge, which is needed for second-order accuracy [18–22]. In particular, Barth and Japerson proposed a sin-
gle multi-dimensional slope limiting by extending Spekreijse’s monotonic concept [20,23]. As successive studies, various re-
fined limiters have been devised [24–26]. Furthermore, the MUSCL-type framework was also extended to k-exact
reconstruction by introducing Hessian matrix [27] or ENO/WENO reconstruction [28,29]. From this perspective, higher-order
methods, such as discontinuous Galerkin method (DG) [30], spectral volume method (SV) [31] and spectral difference meth-
od (SD) [32], have been actively studied in recent years.

Although current reconstruction methods have enjoyed successes in many applications, the optimal limiting strategy to
fulfill a high-level of accuracy, robustness and convergence is still one of the main issues to be addressed. For example, some
of the reconstruction methods are not successful in dealing with oscillations in multiple dimensions. This manifests the need
to explore an effective limiting criterion and accurate oscillation control method for multi-dimensional computations.

In order to find out a suitable criterion for oscillation control in multiple dimensions, the one-dimensional monotonic
condition was extended to multi-dimensional flows, and the multi-dimensional limiting process (MLP) was successfully for-
mulated on structured grids [33,34]. From the series of studies, it has been clearly demonstrated that the MLP limiting strat-
egy possesses favorable characteristics, such as accuracy and convergence enhancement in inviscid and viscous
computations. Furthermore, the MLP limiting strategy can be implemented regardless of grid topology. In the present paper,
a new robust and accurate limiting strategy on unstructured grids is proposed within the MUSCL-type framework.

This paper is organized as follows. At first, the MUSCL-type reconstruction is briefly described in Section 2. Then, the
MLP on structured grids is summarized and the unstructured version of MLP is formulated in Section 3. In Section 4,
various numerical test cases are carried out to verify the performance of the present method. Finally, conclusion is drawn
in Section 5.
2. MUSCL-type finite volume methods on unstructured grids

2.1. MUSCL-type reconstruction

Let us consider the multi-dimensional hyperbolic conservation laws as follows.
@Q
@t
þr � F ¼ 0; ð1Þ
where Q is the state variable vector and F is the flux function vector. In finite volume method, Eq. (1) is integrated on the
control volume Tj,
Z

Tj

@Q
@t

dV þ
Z
@Tj

F � ndS ¼ 0; ð2Þ
where n is an outward normal vector. Depending on the location of physical variables, one may use either a cell-centered or a
cell-vertex approach. A cell-centered approach is adopted in the present work, but the same concept can be similarly imple-
mented into a cell-vertex discretization.

After approximating the flux function numerically, the semi-discrete form of Eq. (2) can be written as follows.
jTjj
@Q j

@t
þ
X

ejk2Tj

HðQ jk;Q kjÞjejkj ¼ 0; ð3Þ
where �Q j denotes the cell-averaged state vector, �Q jk is the cell interface state vector of the direction from the cell Tj to the
cell Tk. jTjj is the area of the cell Tj. ejk denotes the edge between Tj and Tk, and jejkj is its length. HðQ L;Q RÞ is the vector of a
numerical flux function. Midpoint rule is applied to calculate the numerical flux.

Gradient in a cell is estimated by the MUSCL-type reconstruction. Employing a linear or quadratic distribution in a cell, a
second-order or third-order accurate solution can be obtained, respectively. Since the present work is the starting point of
developing an unstructured version of MLP, a linear distribution is assumed in a cell.
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Similar to the one-dimensional MUSCL approach, reconstructed values are controlled by a limiter function to ensure
monotonicity. For each component of the state variable vector, the limited reconstruction within a cell is expressed as
follows.
qjðx; yÞ ¼ �qj þ /r�qj � r; ð4Þ
where qj is the component of the state variable vector Q ;r�qj is the estimated gradient of the cell Tj and / is a limiting func-
tion. r is the vector from centroid of the cell Tj. Reconstruction becomes conservative if the integration of qj over a cell equals
the cell-averaged value.
�qj ¼
1
jTjj

Z
Tj

qj dV : ð5Þ
The cell interface values (Q L, Q R) are then calculated by Eq. (4).
Several methods have been proposed to approximate the linear gradient r�qj and the limiting function / [35]. Since the

primary goal of the present work is to control numerical oscillations, we adopt one of the proposed methods to evaluate the
linear gradient r�qj, and focus on the limiting function /. The following subsection briefly describes a linear reconstruction
procedure of r�qj.

2.2. Methods of linear reconstruction

The easiest method is to use the simple gradient operator by three cell-averaged values among Tj and its neighborhood
[25,26].
r�qj ¼
� n1

n3

� n2
n3

 !
; ð6Þ
where n1;n2 and n3 are the components of the vector n normal to the plane, which is given by
n ¼ ðPi � PjÞ � ðPk � PiÞ;Pi ¼
xi

yi

qi

0
B@

1
CA: ð7Þ
This method needs little computational cost, but it is not clear which triangle (or combination of triangles) is the optimal
choice for gradient operation: ðDABCÞ; ðDABOÞ; ðDBCOÞ; ðDCAOÞ (see Fig. 1). Moreover, the operation may not be robust and
accurate especially on stretched triangular element. As a consequence, two methods are mainly used [35].

The first choice is to use the Green–Gauss integral formula which transforms a gradient operation into a simple line inte-
gration as follows
r�qj ’
1
jTjj

Z
Tj

r�qj dV ¼
Z
@Tj

�qndS: ð8Þ
The last term is then calculated by a well-known numerical integral formula, such as trapezoidal method. In the cell-cen-
tered finite volume method, the nodal values are obtained by summing the values of neighboring cells with the weighting
of inversely proportional distance from vertex to centroid [36]
q̂v i
¼
P

k
�qk=rv i ;kP
kr�1

v i ;k

; ð9Þ
where q̂v i
is the nodal value at the vertex v i, and rv i ;k is the distance from the vertex v i to the neighboring cell Tk.

The second choice is the least-square reconstruction, which gives the gradient approximation by fitting the values of the
cell and its neighborhood. For a simple triangular grid, the gradient is estimated by applying Eq. (4) to the neighborhood of
the cell
B

O
CA

Fig. 1. Triangle cell TO and its neighborhood.
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½L1L2�r�qj ¼ f; ð10Þ
where L1 ¼ ½DxOADxOBDxOC �T ; L2 ¼ ½DyOADyOBDyOC �
T and f ¼ ½�qA � �qO�qB � �qO�qC � �qO�T . The least-square fitting of the above

over-determined matrix gives an estimated gradient
r�qO ¼
1

l11l22 � l2
12

l22ðL1 � fÞ � l12ðL2 � fÞ
l11ðL2 � fÞ � l12ðL1 � fÞ

� �
; ð11Þ
where lij ¼ LT
i � Lj. For all its additional computational cost, the least-square technique is known to be more robust and less

sensitive to grid irregularity [37]. Moreover, least-square reconstruction can be easily extended to quadratic- or higher-order
reconstructions by including higher-order derivative terms [27,29].
3. Multi-dimensional limiting process on triangular meshes

3.1. Review of MLP on structured grids

The basic concept of MLP [33,34] is summarized in this subsection. For the purpose of brevity, it is explained in the two-
dimensional setting but it is equally valid in three-dimensional case. We start by imagining a multi-dimensional situation
where the direction of a local gradient is not aligned with local grid lines (see Fig. 2). This manifests the necessity to control
the physical properties of cell-vertex points, which is not properly given by conventional TVD condition. To examine the
missing information, we compare the MLP with TVD-MUSCL approach [38].

With symmetric MUSCL-type TVD limiters, the cell interface values can be obtained as follows
qL
iþ1=2;j ¼ �qi;j þ

1
2
uðrLÞD�qi�1=2;j; qR

iþ1=2;j ¼ �qi;j �
1
2
uðrRÞD�qiþ3=2;j; ð12Þ
where D�qi�1=2;j ¼ �qi;j � �qi�1;j; rL ¼
D�qiþ1=2;j

D�qi�1=2;j
and rR ¼

D�qiþ1=2;j

D�qiþ3=2;j
. The limiting function uðrÞ satisfies the symmetric condition of

uðrÞ ¼ ruð1=rÞ. One-dimensional limiting condition using the TVD constraint yields the following Sweby’s TVD zone [10]
0 6 uðrÞ 6 minð2r;2Þ: ð13Þ
Among several attempts to obtain monotonic solution in multi-dimensional space [22,23], MLP turned out to be one of the
most successful ways to regulate spurious oscillations across multi-dimensional discontinuities. In Fig. 2, MLP applies the
condition of Eq. (14) to each vertex point
�qmin
neighbor 6 qvtx 6 �qmax

neighbor; ð14Þ
where qvtx is the estimated-value at vertex, and ð�qmin
neighbor; �qmax

neighborÞ are the minimum and maximum values among the neigh-
boring cell-averaged values sharing the vertex. A physical property at each vertex is then estimated by summing the mono-
tonic variations along each coordinate direction, and the MLP condition of Eq. (14) is applied. Through some analysis using
the TVD-MUSCL framework, the variable limiting region of Eq. (15) is obtained
0 6 uðrÞ 6 minðar;aÞ: ð15Þ
a is the multi-dimensional restriction coefficient which determines the baseline variable limiting region. Detailed derivation
of a (or aL;aR in Eq. (16)) for general two- and three-dimensional flow situations can be found in Ref. [34]. From Eqs. (13) and
(15), one can see that the MLP limiting region is determined depending on local multi-dimensional flow physics, while TVD
provides a fixed limiting region (see Fig. 3). Finally, local slopes (bL; bR in Eq. (16)) of MLP limiters can be determined in var-
Fig. 2. A multi-dimensional flow situation where flow gradient is not aligned with local grid lines.



Fig. 3. Variable MLP limiting region.
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ious ways. One may use slopes of conventional TVD limiters or slopes based on local higher-order polynomials. Choices of
slopes can be found in Refs. [33,34]. Then, the cell interface flux by the MLP limiting is obtained as follows
qL
iþ1=2;j ¼ �qi;j þ

1
2
uðrLi;j

;aL;bLÞD�qi�1=2;j ¼ �qi;j þ
1
2

maxð0;minðaLrLi;j
;aL;bLÞÞD�qi�1=2;j;

qR
iþ1=2;j ¼ �qi;j �

1
2
uðrRiþ1;j

;aR; bRÞD�qiþ3=2;j ¼ �qi;j �
1
2

maxð0;minðaRrRiþ1;j
;aR;bRÞÞD�qiþ3=2;j: ð16Þ
3.2. MLP condition on unstructured grids and the maximum principle

There are some additional difficulties to extend the MLP condition onto unstructured grids. Most notably, there is no ex-
plicit reference direction, and as a result, some key variables, such as a and b in Eq. (16), can not be derived step by step.
Thus, we start from the MUSCL-type framework on unstructured meshes.

From the MLP formulation on structured grids [33,34], it was observed that the maximum and minimum values along the
cell boundary should be examined to prevent spurious oscillations. In the MUSCL-type linear reconstruction, local extrema
occur at vertex, and thus only the vertex value is limited by the MLP condition. By considering all of the neighboring cells
sharing the vertex, the range of the multi-dimensional slope limiter can be obtained. Applying the MLP condition (Eq.
(14)) to Eq. (4), the permissible range can be expressed as follows
�qmin
neighbor � �q

rq � rvertex
6 / 6

�qmax
neighbor � �q

rq � rvertex
: ð17Þ
The effectiveness of the MLP condition is supported by the maximum principle, which is a complementary condition ensur-
ing the monotonicity in multiple dimensions. This can be proved by taking a similar step shown in Refs. [39,35]. For the pur-
pose of simplicity, we consider two-dimensional case but the result can be equally extended to three-dimensional
tetrahedral meshes. Let us consider the following scalar hyperbolic conservation law in two-dimensional space
@q
@t
þ @f ðqÞ

@x
þ @gðqÞ

@y
¼ 0: ð18Þ
Theorem. For a fully discrete finite volume scheme of Eq. (18) with a monotone Lipschitz continuous flux function, if the linear
reconstruction satisfies the MLP condition under a proper CFL restriction, then the scheme satisfies the maximum principle, i.e.,
�qmin;n
j;neighbor 6

�qnþ1
j 6 �qmax;n

j;neighbor: ð19Þ
�qmin
j;neighbor and �qmax

j;neighbor are the minimum and maximum cell-averaged values among the neighborhood of the cell Tj which shares at
least one common vertex with the cell Tj (see the shaded region in Fig. 4).

Proof. Consider the semi-discrete form of Eq. (18) on the cell Tj.
jTjj
@�qj

@t
þ
X

ejk2Tj

hð�qjk; �qkjÞjejkj ¼ 0; ð20Þ
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Fig. 4. Neighborhood of the cell Tj (shaded region: group of cells sharing the vertex A).
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where �qjk is the cell interface value in the direction from the cell Tj to the cell Tk, and hð�qjk; �qkjÞ is a numerical flux function. �qjk

is assumed to be located at the center of a cell interface since the numerical flux is obtained by the midpoint rule.
Let q̂v i ;j denote the estimated-value at the vertex v i of the cell Tj after the limiting process. From the MLP condition, it

should satisfy the following inequality.
q̂min
v i
6 q̂v i ;j 6 q̂max

v i
; ð21Þ
where q̂min
v i

and q̂max
v i

are the minimum and maximum cell-averaged values among the cells sharing the vertex v i. Then,
�qmin

j;neighbor and �qmax
j;neighbor can be written as
�qmin
j;neighbor ¼min

v i2Tj

ðq̂min
v i
Þ; �qmax

j;neighbor ¼max
v i2Tj

ðq̂max
v i
Þ: ð22Þ
From the linear reconstruction, the cell interface values are expressed as a linear combination of the vertex values
�qjk ¼ nq̂v1 ;j þ ð1� nÞq̂v2 ;j; 0 6 n 6 1; ð23Þ
�qkj ¼ fq̂v1 ;k þ ð1� fÞq̂v2 ;k; 0 6 f 6 1: ð24Þ
With Eqs. (21) and (22), the interface values are bounded as
�qmin
j;neighbor 6

�qjk; �qkj 6 �qmax
j;neighbor: ð25Þ
By applying Eq. (25) and the monotonicity of the numerical flux function to Eq. (20), the following relation can be obtained.
@�qj

@t
¼ � 1
jTjj

X
ejk2Tj

hð�qjk; �qkjÞjejkj 6 �
1
jTjj

X
ejk2Tj

h min
k
ð�qjkÞ; �qmax

j;neighbor

� �
jejkj

¼ � 1
jTjj

X
ejk2Tj

h min
k
ð�qjkÞ; �qmax

j;neighbor

� �
� h min

k
ð�qjkÞ;min

k
ð�qjkÞ

� �� �
jejkj

¼ � 1
jTjj

X
ejk2Tj

@h
@q

min
k
ð�qjkÞ; n

� �
�qmax

j;neighbor �min
k
ð�qjkÞ

� �
jejkj

6
Lj

jTjj
sup

n2 minkð�qjkÞ;�qmax
j;neighbor

h i @h
@q
ðmin

k
ð�qjkÞ; nÞ

����
����ð�qmax

j;neighbor �min
k
ð�qjkÞÞ; ð26Þ
where Lj is the perimeter of Tj.
In a similar manner, we can obtain another inequality.
@�qj

@t
P

Lj

jTjj
sup

n2 �qmin
j;neighbor

;maxkð�qjkÞ
h i @h

@q
ðmax

k
ð�qjkÞ; nÞ

����
���� �qmin

j;neighbor �max
k
ð�qjkÞ

� �
: ð27Þ
If we apply the simple Euler explicit time integration to Eq. (20) under the following CFL condition,
Dt
Lj

jTjj
sup

q1 ;q22 �qmin
j;neighbor

;�qmax
j;neighbor

h i @h
@q2
ðq1; q2Þ

����
����

0
BB@

1
CCA 6 1

3
; ð28Þ
the two inequalities, Eqs. (26) and (27), can be combined as
1
3

�qmin;n
j;neighbor �max

k
ð�qn

jkÞ
� �

6 �qnþ1
j � �qn

j 6
1
3

�qmax;n
j;neighbor �min

k
ð�qn

jkÞ
� �

: ð29Þ
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Since �qn
jk is located at the edge midpoint, we have
1
3

X
ejk2Tj

�qn
jk ¼

1
3

X
ejk2Tj

�qn
j þr�qn

j � rjk

	 

¼ �qn

j : ð30Þ
Thus, the right hand side of Eq. (29) can be further simplified into the following expression
�qmax;n
j;neighbor �min

k
ð�qn

jkÞ ¼ �qmax;n
j;neighbor �

1
3

X
ejk2Tj

min
k

�qn
jk

	 

þ �qn

jk � �qn
jk

� �
¼ �qmax;n

j;neighbor � �qn
j þ

1
3

X
ejk2Tj

�qn
jk �min

k
ð�qn

jkÞ
� �

6 �qmax;n
j;neighbor � �qn

j þ
1
3

2�qmax;n
j;neighbor þmin

k
ð�qn

jkÞ � 3 min
k
ð�qn

jkÞ
� �

¼ �qmax;n
j;neighbor � �qn

j þ
2
3

�qmax;n
j;neighbor �min

k
ð�qn

jkÞ
� �

:

ð31Þ
Thus, we have
1
3

�qmax;n
j;neighbor �min

k
ð�qn

jkÞ
� �

6 �qmax;n
j;neighbor � �qn

j : ð32Þ
Similarly, the left hand side of Eq. (29) can be expressed as
1
3

�qmin;n
j;neighbor �max

k
ð�qn

jkÞ
� �

P �qmin;n
j;neighbor � �qn

j : ð33Þ
Inserting Eqs. (32) and (33) into Eq. (29), the ðnþ 1Þth cell-averaged value is bounded by the minimum and maximum cell-
averaged values among the neighborhood of the cell Tj at n step.
�qmin;n
j;neighbor 6

�qnþ1
j 6 �qmax;n

j;neighbor: ð34Þ
Thus, the MLP limiting satisfies the maximum principle. h

The above result relies on two assumptions: one is that grid system consists of triangular elements only, and the other is
that a numerical flux is calculated by the midpoint rule. However, these restrictions can be relieved by employing the Barth’s
geometric shape parameter [35]
Cgeom ¼ sup
06h62p

a�1ðhÞ: ð35Þ
a indicates the smallest fractional perpendicular distance from the center to one of the two minimally separated parallel
hyperplanes with the orientation of h. With Cgeom, the CFL condition (Eq. (28)) can be generalized as follows
Dt
Lj

jTjj
sup

q1 ;q22 �qmin
j;neighbor

;�qmax
j;neighbor

h i @h
@q2
ðq1; q2Þ

����
����

0
@

1
A 6 1

Cgeom : ð36Þ
For triangular mesh, the geometric shape parameter becomes 3, which is exactly the same as the CFL condition. Thus, Eq. (29)
becomes
1
Cgeom �qmin;n

j;neighbor �max
k
ð�qn

jkÞ
� �

6 qnþ1
j � qn

j 6
1

Cgeom �qmax;n
j;neighbor �min

k
ð�qn

jkÞ
� �

: ð37Þ
From the definition of Cgeom and the linear reconstruction of �qj, the right hand side of Eq. (37) is given by
�qmax;n
j;neighbor �min

k
ð�qn

jkÞ ¼ �qmax;n
j;neighbor � �qn

j

	 

þ �qn

j �min
k
ð�qn

jkÞ
� �

6 �qmax;n
j;neighbor � �qn

j

	 

þ cgeom max

k
ð�qn

jkÞ �min
k
ð�qn

jkÞ
� �

6 �qmax;n
j;neighbor � �qn

j

	 

þ cgeom �qmax;n

j;neihbor �min
k
ð�qn

jkÞ
� �

; ð38Þ
where cgeom ¼ ðCgeom � 1Þ=Cgeom. It is noted that Eq. (38) does not require �qn
jk to be located at the edge midpoint. And, we have
�qmax;n
j;neighbor �min

k
ð�qn

jkÞ 6 Cgeom �qmax;n
j;neighbor � �qn

j

	 

: ð39Þ
Similarly, the left hand side of Eq. (37) can be rewritten as
�qmin;n
j;neighbor �max

k
ð�qn

jkÞP Cgeom �qmin;n
j;neighbor � �qn

j

	 

: ð40Þ
Inserting Eqs. (39) and (40) into Eq. (37) leads to the maximum principle of Eq. (34) in general case. All of the processes from
Eqs. (36)–(40) can be equally extended into three-dimensional tetrahedral meshes with Cgeom ¼ 4. Thus, the MLP limiting
satisfies the maximum principle under general condition not only on triangular meshes but also on three-dimensional tet-
rahedral meshes. It also shows that the process from Eqs. (30)–(33) can be obtained by using geometric characteristics.
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Fig. 5. Comparison of stencils involved in limiting and the maximum principle. Shaded region is the stencil for the maximum principle, and dotted line is for
limiting. (a) LCD, MLG limiter, (b) Barth’s limiter and (c) MLP limiting.
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Other limiters for unstructured grids, such as Barth limiter,1 LCD and MLG limiters [25,26], also satisfy the maximum
principle. The essential difference is the stencil involved in limiting and the maximum principle (see Fig. 5). Since the per-
missible limiting range of these limiters essentially comes from the Spekreijse’s monotonic condition [23], only the neigh-
boring cells which share one of the edges of the updated cell are considered. Thus, they may have drawbacks in capturing
multi-dimensional flow physics. On the other hand, the MLP condition fully exploits all of the cell-averaged values sharing
vertices as well as edges. More importantly, the stencils involved in limiting and the maximum principle are equivalent. As a
result, the MLP limiting is less sensitive to local mesh distribution and faithfully represents multi-dimensional flow physics.
Detailed numerical comparisons are provided in Section 4.

3.3. General formulation of MLP on unstructured grids

By implementing the MLP condition into the MUSCL-type framework, the general formulation of the MLP slope limiter
can be expressed as follows
1 Exc
/MLP ¼ min
8v i2Tj

Uðrmax
v i ;j
Þ if r�qj � rv i ;j > 0

Uðrmin
v i ;j
Þ if r�qj � rv i ;j < 0

1 otherwise

8><
>: ; ð41Þ
where rmin or max
v i ;j

ðrmin
v i ;j

or rmax
v i ;j
Þ is the ratio of the allowable variation to the estimated variation at the vertex v i. In Eq. (41),

rmin or max
v i ;j

and Uðrmin or max
v i ;j

Þ have to be specified. This bears some analogy to the determination of a and b in Eq. (16) on struc-
tured meshes. In MLP, the ratio rmin or max

j is defined by
rmin
v i ;j
¼

q̂min
v i
� �qj

r�qj � rv i ;j
; rmax

v i ;j
¼

q̂max
v i
� �qj

r�qj � rv i ;j
: ð42Þ
Eq. (42) is similar to other limiters, but the basic differences are, as shown in Fig. 5, the location where the limiter is working
and the stencil to determine q̂min

v i
and q̂max

v i
. From the definition of rmin or max

v i ;j
, one can readily see that the allowable limiting

region satisfying the maximum principle should be given by 0 6 Uðrmin or max
v i ;j

Þ 6minð1; rmin or max
v i ;j

Þ for each vertex v i. As a
local slope, two candidates are considered. The first one is minð1; rmin or max

v i ;j
Þ, which is the most upper slope in the allowable

limiting region. This limiter is denoted as MLP-u1
Uðrmin or max
v i ;j

ÞMLP-u1 ¼minð1; rmin or max
v i ;j

Þ: ð43Þ
MLP-u1 is not differentiable, which may have problems in steady state computations. By employing the Venkatakrishnan’s
modification of the Barth’s limiter [24], MLP-u2 (or MLP-Venkatakrishnan) limiter is proposed for steady state computations
UðDþ
D�
ÞMLP-u2 ¼

1
D�

ðD2
þ þ �2ÞD� þ 2D2

�Dþ
D2
þ þ 2D2

� þ D�Dþ þ �2

" #
; ð44Þ
where Dþ ¼ q̂min or max
v i

� �qj;D� ¼ r�qj � rv i ;j:� ¼ ðKDxÞr with r ¼ 1:5. The role of � is to distinguish a nearly constant region
from a fluctuating one. Like TVB or ELED limiters, it also plays a role of preventing the clipping phenomenon [22,24].

From the observation that the stencils involved in limiting and the maximum principle are the same, and the MLP stencil
is more compact and multi-dimensional, one may expect that the MLP slope is greater than the slope of conventional limiter,
such as Barth limiter and Venkatakrisnan limiter. Regarding this, the following result can be presented.
ept for the maximum principle, similar limiting strategy was also proposed along an edge within MUSCL-FEM framework [18].
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Lemma 1. Let a linear reconstruction of q0ðx; yÞ ¼ �q0 þ /r�q0 � r on the stencil in Fig. 6 satisfy the following two conditions.

� C1: The vertex value of T0 opposite to the maximum neighboring cell-centered value of T0 is less than �q0.
� C2: The vertex value of T0 opposite to the minimum neighboring cell-centered value of T0 is greater than �q0.

Then, the allowable variationð/r�q0 � rÞ obtained by the MLP limiting from the cell centroid to each vertex is greater than that of
conventional (Barth or Venkatakrisnan) limiting. Thus, /MLP-u1 (or /MLP-u2) is less diffusive than /Barth (or /Venkatakrishnan).

Proof. Let us consider the stencil, as shown in Fig. 6, around the cell T0 whose vertex is ðv1;v2;v3Þ, respectively. q0ðx; yÞ is
the least-square reconstruction of �q0 using �q0; �q1; �q2; �q3. If �q0 is the local extremum, the allowable variation becomes zero to
yield the first order accuracy. If the local extremum is one of ð�q1; �q2; �q3Þ, we may assume, without loss of generality, that
�q1 ¼ maxð�q0; �q1; �q2; �q3Þ and �q2 ¼minð�q0; �q1; �q2; �q3Þ. From the conditions C1 and C2, we have
r�q0 � rv1 ;0 < 0 and r�q0 � rv2 ;0 > 0: ð45Þ
The maximum allowable variation, which is simply the numerator of rmin or max
v i ;j

in Eq. (42), determines the maximum allow-
able slope. The original form of Barth limiter [20], which uses vertex for limiting procedure, is compared with the MLP lim-
iter. Then, the maximum allowable variation can be written as follows
DBarth ¼
maxð�q0; �q1; �q2; �q3Þ � �q0 if r�q0 � rv i ;0 > 0
minð�q0; �q1; �q2; �q3Þ � �q0 if r�q0 � rv i ;0 < 0
0 otherwise

8><
>: : ð46Þ

DMLP ¼
q̂max

v i
� �q0 if r�q0 � rv i ;0 > 0

q̂min
v i
� �q0 if r�q0 � rv i ;0 < 0

0 otherwise

8><
>: : ð47Þ
For the vertex v1,
minð�q0; �q1; �q2; �q3Þ ¼ �q2 P minð�q0; �q2; �q3; �q8; �q9; �q10Þ ¼ q̂min
v1
: ð48Þ
For the vertex v2,
maxð�q0; �q1; �q2; �q3Þ ¼ �q1 6 maxð�q0; �q1; �q3; �q11; �q12; �q13Þ ¼ q̂max
v2

: ð49Þ
And, for the vertex v3,
minð�q0; �q1; �q2; �q3Þ ¼ �q2 P minð�q0; �q1; �q2; �q5; �q6; �q7Þ ¼ q̂min
v3
; ð50Þ

maxð�q0; �q1; �q2; �q3Þ ¼ �q1 6 maxð�q0; �q1; �q2; �q5; �q6; �q7Þ ¼ q̂max
v3

: ð51Þ
From Eqs. (48)–(51), jDMLPj is greater than jDBarthj at all vertices of the cell T0, and U in Eqs. (43) and (44) is the same for MLP
and conventional limiting. Thus, /MLP-u1ðor /MLP-u2ÞP /Barthðor /VenkatakrishnanÞ. h

The two conditions ðC1;C2Þ are not restrictive. They readily holds for equilateral triangles, and are generally satisfied un-
less meshes are far from equilateral and highly distorted. It is noted that the above result can be similarly extended into
three-dimensional tetrahedral meshes.

In summary, the implementation step of the MLP limiting strategy can be described as follows.

Step 1: For each cell Tj in the computational domain, obtain gradient by the methods of linear reconstruction described
in Section 2.2.

Step 2: For each vertex v i of the cell Tj, search the minimum ðq̂min
v i
Þ and the maximum ðq̂max

v i
Þ by checking all the neigh-

boring cells which share the vertex v i.
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Step 3: For each vertex v i of the cell Tj, obtain rmin or max
v i ;j

in Eq. (42) and determine the allowable local slope using Eq.
(43) or Eq. (44). Then, /MLP takes the minimum value among the allowable slopes using Eq. (41).

Step 4: For each edge ejk of the cell Tj, obtain �qjk ¼ �qj þ /MLPr�qj � rjk and evaluate the numerical flux hð�qjk; �qkjÞ at the
edge midpoint.
4. Numerical results

Extensive numerical experiments have been carried out to demonstrate the performance of the newly proposed MLP-u
limiters on unstructured grids. Test cases include linear wave problem, shock tube problems, isentropic vortex problem
and other well-known numerical test cases. Accuracy and convergence characteristics of MLP-u limiters are compared with
conventional limiters such as Barth’s limiter [20] or Venkatakrishnan’s limiter [24]. Unless mentioned otherwise, conserva-
tive variables are used for interpolation. Lax–Friedrichs scheme, Roe-type schemes [40,41] and AUSM-type scheme [42] are
adopted as numerical fluxes. As a time integration method, third-order TVD Runge–Kutta method [43] is used for unsteady
calculation, and Gauss–Seidel method [44] is used for steady calculation.

4.1. Linear wave problem

A scalar linear wave problem governed by the following equation is considered
y

0
0

0.2

0.4

0.6

0.8

1

qt þ a � rq ¼ 0; ð52Þ
with constant wave velocity a. The numerical flux is calculated by an upwind scheme and the third-order accurate TVD Run-
ge–Kutta time integration is used.

Computation domain is [0,1] � [0,1] and periodic boundary condition is applied. In order to examine grid dependency,
three types of meshes, whose triangular elements are created by dividing rectangular elements along the diagonal direction,
are tested (see Fig. 7). To avoid mesh alignment, the advection velocity is chosen as a ¼ ð1;2Þ [26]. Coefficient of Venkata-
krishnan’s limiter is 0.1. Two examples with smooth and discontinuous initial data are considered.

4.1.1. Double sine wave
The initial profile of the wave is given as follows
q0 ¼ sinð2pxÞsinð2pyÞ: ð53Þ
Figs. 8–10 show computed solutions with 20 � 20 � 2 grids at t ¼ 1, when the periodic wave returns to the initial location.
Depending on mesh distribution, computed contours are somewhat distorted along the diagonal direction. Compared with
Barth’s limiter and Venkatakrishnan’s limiter, the results of MLP-u limiters are less sensitive to the mesh distribution. Tables
1–3 show quantitative comparisons of solution errors at t ¼ 1. MLP-u limiters yield a significant improvement over conven-
tional limiters, which confirms the robustness and accuracy of the MLP formulation. Venkatakrishnan’s modification is
slightly more diffusive than the baseline limiter, but it does not seem to seriously hamper the solution accuracy.

4.1.2. Square wave
To examine oscillatory behavior across a discontinuity, square wave advection is considered with the following initial
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Fig. 8. Comparison of contour on grid type A (double sine wave).
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Fig. 10. Comparison of contour on grid type C (double sine wave).

Table 1
Grid refinement test for the advection of double sine wave on grid type A.

Scheme Grid L1 Order L1 Order Peak

Barth’s limiter 20 � 20 � 2 4.0857E�01 – 1.8795E�01 – 0.5896
40 � 40 � 2 2.3275E�01 0.81 1.1570E�01 0.70 0.7683
80 � 80 � 2 1.3716E�01 0.76 6.6048E�02 0.81 0.8762
160 � 160 � 2 7.7957E�02 0.81 3.6023E�02 0.87 0.9365

Venkatakrishnan’s limiter 20 � 20 � 2 4.7878E�01 – 2.2160E�01 – 0.5190
40 � 40 � 2 2.8812E�01 0.73 1.4261E�01 0.64 0.7127
80 � 80 � 2 1.6062E�01 0.84 8.2375E�02 0.79 0.8447
160 � 160 � 2 8.9043E�02 0.85 4.4656E�02 0.88 0.9194

MLP-u1 20 � 20 � 2 1.7544E�01 – 3.3721E�02 – 0.8153
40 � 40 � 2 6.6036E�02 1.41 6.5248E�03 2.37 0.9317
80 � 80 � 2 2.3412E�02 1.50 1.2439E�03 2.39 0.9760
160 � 160 � 2 8.0831E�03 1.53 2.5402E�04 2.29 0.9918

MLP-u2 20 � 20 � 2 2.5789E�01 – 7.0173E�02 – 0.7325
40 � 40 � 2 1.0727E�01 1.27 1.6780E�02 2.06 0.8906
80 � 80 � 2 4.3619E�02 1.30 4.1919E�03 2.00 0.9559
160 � 160 � 2 1.7198E�02 1.34 9.7094E�04 2.11 0.9827

Unlimited (least-square) 20 � 20 � 2 3.2729E�02 – 1.7253E�02 – 0.9663
40 � 40 � 2 6.5138E�03 2.33 3.4741E�03 2.31 0.9946
80 � 80 � 2 1.4691E�03 2.15 8.0518E�04 2.11 0.9990
160 � 160 � 2 3.5323E�04 2.06 1.9720E�04 2.03 0.9998
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q0 ¼
1 if � 0:5 6 x; y 6 0;
0 otherwise:

�
ð54Þ
Fig. 11 shows the computed advection of square wave at t ¼ 1 with 80 � 80 � 2 of type A grid. Both limiters give monotone
solutions near the discontinuous profile but MLP-u limiter captures the discontinuity much more sharply. In Table 4, the
maximum and minimum values are examined with three types of grids. It is observed that MLP-u limiters are less dissipative
and accurately resolve the discontinuity without spurious oscillations.



Table 2
Grid refinement test for the advection of double sine wave on grid type B.

Scheme Grid L1 Order L1 Order Peak

Barth’s limiter 20 � 20 � 2 5.4313E�01 – 2.2965E�01 – 0.4551
40 � 40 � 2 3.3255E�01 0.71 1.4527E�01 0.66 0.6710
80 � 80 � 2 1.8415E�01 0.85 8.4258E�02 0.79 0.8197
160 � 160 � 2 9.9818E�02 0.88 4.6634E�02 0.85 0.9070

Venkatakrishnan’s limiter 20 � 20 � 2 6.1746E�01 – 2.6079E�01 – 0.3823
40 � 40 � 2 3.8565E�01 0.68 1.7028E�01 0.61 0.6176
80 � 80 � 2 2.1392E�01 0.85 9.9423E�02 0.78 0.7888
160 � 160 � 2 1.1424E�01 0.90 5.4487E�02 0.87 0.8892

MLP-u1 20 � 20 � 2 2.2571E�01 – 5.1843E�02 – 0.7662
40 � 40 � 2 8.3663E�02 1.43 1.0606E�02 2.29 0.9141
80 � 80 � 2 2.9851E�02 1.49 2.2415E�03 2.24 0.9696
160 � 160 � 2 1.0438E�02 1.52 4.8707E�04 2.20 0.9894

MLP-u2 20 � 20 � 2 3.0541E�01 – 8.5665E�01 – 0.6884
40 � 40 � 2 1.2320E�01 1.31 2.4063E�02 1.83 0.8760
80 � 80 � 2 4.9267E�02 1.32 7.3554E�03 1.71 0.9509
160 � 160 � 2 1.9195E�02 1.36 1.9294E�03 1.93 0.9810

Unlimited (least-square) 20 � 20 � 2 8.3646E�02 – 4.2743E�02 – 0.9308
40 � 40 � 2 1.6161E�03 2.37 7.8493E�03 2.45 0.9901
80 � 80 � 2 3.5471E�03 2.19 1.7027E�03 2.20 0.9985
160 � 160 � 2 8.4319E�04 2.07 4.0747E�03 2.06 0.9998

Table 3
Grid refinement test for the advection of double sine wave on grid type C.

Scheme Grid L1 Order L1 Order Peak

Barth’s limiter 20 � 20 � 2 5.1426E�01 – 1.9722E�01 – 0.4926
40 � 40 � 2 3.2117E�01 0.68 1.1558E�01 0.77 0.6870
80 � 80 � 2 1.8617E�01 0.79 6.5150E�02 0.83 0.8218
160 � 160 � 2 1.0461E�01 0.83 3.5483E�02 0.88 0.9050

Venkatakrishnan’s limiter 20 � 20 � 2 5.6554E�01 – 2.2564E�01 – 0.4343
40 � 40 � 2 3.5019E�01 0.69 1.3571E�01 0.73 0.6551
80 � 80 � 2 2.0042E�01 0.81 7.5993E�02 0.84 0.8059
160 � 160 � 2 1.1038E�01 0.86 4.0681E�02 0.90 0.9050

MLP-u1 20 � 20 � 2 1.7335E�01 – 3.8142E�02 – 0.8191
40 � 40 � 2 6.4863E�02 1.42 8.6631E�02 2.14 0.9334
80 � 80 � 2 2.3301E�02 1.48 1.9312E�03 2.17 0.9763
160 � 160 � 2 8.2233E�03 1.50 4.4283E�04 2.12 0.9917

MLP-u2 20 � 20 � 2 2.4069E�01 – 5.4225E�02 – 0.7530
40 � 40 � 2 1.0045E�01 1.26 1.4353E�02 1.92 0.8987
80 � 80 � 2 3.9859E�02 1.33 3.3792E�03 2.09 0.9601
160 � 160 � 2 1.5406E�03 1.37 8.3178E�04 2.02 0.9846

Unlimited (least-square) 20 � 20 � 2 5.9716E�02 – 2.51297E�02 – 0.9760
40 � 40 � 2 1.4469E�03 2.05 6.1312E�03 2.04 0.9969
80 � 80 � 2 3.5303E�03 2.04 1.5200E�03 2.01 0.9996
160 � 160 � 2 8.7445E�04 2.01 3.7912E�04 2.00 0.9999
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4.2. Solid bod